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Abstract. The dynamics of self-assembled fluids subjected to a uniform shear are solved for large-N com-
ponent model of microemulsions. The dynamical structure factor S(k, t) is studied for quenches from an
uncorrelated high temperature state into the Lifshitz line within the microemulsion phase. The structure
factor shows multiscaling behavior with characteristic length scales (t7/ ln t)1/6 in the flow direction and
(t/ ln t)1/6 in directions perpendicular to the flow. The structure factor shows two parallel ridges in the
shear-flow plane.

PACS. 47.20.Hw Morphological instability; phase changes – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 83.50.Ax Shear flows

1 Introduction

The behavior of self assembled fluids such as: mixtures
of water, oil and surfactants have attracted considerable
interest [1]. These mixtures can spontaneously form very
different complex structures. For example, the variation
in concentration of the surfactants can lead to different
phases. It is well known that the increase in the surfactant
concentration reduces the surface tension, thus leading to
microemulsion phase while high surface tension leads to
oil-rich or water-rich regions. Similar complex structures
are also formed by macromolecules such as: homopolymer
blend and diblock copolymers [2].

Initially most of the studies were focused on the equi-
librium properties of the self assembled fluids, but in the
last two decades there has been great interest in both the
theoretical and experimental studies of the complex flu-
ids far from equilibrium [3]. Recently there has been in-
terest also on the effect of shear in both binary and self-
assembled fluids [4,5], and macromolecules [3]. In all these
cases, shear introduces anisotropy in the structure factor
S(k, t) [4,6]. This is due to the fact that, in the scaling
limit, the characteristic length scale Lx in the flow direc-
tion is greater than characteristic length scales in the per-
pendicular directions (i.e. Ly, Lz). Shear may also induce
phase transition [4,7], for example, shear-induced shift of
the phase transition temperature in the microphase sepa-
ration in diblock copolymers has been observed [8].

In this paper we study the effect of shear on the
Ginzburg Landau model for self assembled fluids, pro-
posed by Gompper and Schick [1], and generalized to large
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number of components by Marconi and Corberi [9], where
the free energy functional F is given by

F [φ(r, t)] =
∫

ddx

[
1
2

(∇2φ(r, t)
)2

+
b

2
(∇φ(r, t))

+
c2

2N
(φ(r, t))2 (∇φ(r, t))2

+
r

2
(φ(r, t))2 +

g

4N

(
(φ(r, t))2

)2
]

. (1)

The terms, r and g (with g > 0) are the quadratic and
quartic terms of the Ginzburg Landau theory. The terms
containing b and c2 are related to surface tension while
the first term represents a curvature energy contribution
which stabilizes the system. The sign of b and the higher
order derivatives in the gradient expansion distinguish self
assembled fluids from simple binary fluids [1,10].

The equation of motion for zero temperature quench
becomes [4]

∂φα

∂t
= −Γ∇2 δF

δφα
, (2)

where φα is any one component of the vector field φ and
Γ is the mobility coefficient. We are interested in a system
with a uniform shear flow which has a velocity field of the
form v = γyex, where γ is the constant shear rate and
ex is a unit vector in the flow direction. In the presence
of shear, the term (v.∇)φα = γ∂xφα is added to the left
hand side of equation (2) leading to

∂φα

∂t
+ γy∂xφα = −∇2 δF

δφα
. (3)

Note that the mobility Γ has been absorbed into the time
scale of the problem.
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In the limit N → ∞, one can replace (φ)2/N in (3)
by its mean in the usual way [11], leading to the self-
consistent equation, which after Fourier transforming be-
comes

∂φk

∂t
− γkx

∂φk

∂ky
= −k2

[
k4 + Ḃ(t)k2 + Q̇(t)

]
φk, (4)

where Ḃ(t) = b + c2S0(t), Q̇(t) = r + gS0(t) + c2S2(t) and
Sn =

∫
ddk

(2π)d knS(k, t). Equation (4) has been considered
by Corberi et al. [12] with b < 0 (which describes the
lamellar phase for b sufficiently negative) and c2 = 0.

In the scaling limit, we find that the structure factor
S(k, t) has multiscaling behavior, and four maxima, lo-
cated at

k = ±(kmx,−kmy,±kmz), (5)

with characteristic length scales:

Lx ∼ kmx
−1 ∼

(
t7

ln t

)1/6

,

Ly

(∼ kmy
−1

)
= Lz

(∼ kmz
−1

) ∼
(

t

ln t

)1/6

, (6)

along the Lifshitz line (LL). Thus the rotational symme-
try of the zero-shear limit is completely broken. In the
ky = 0 plane, the structure factor S(k, t) has two maxima
terminating two parallel ridges while in the ky = 0 plane,
there are four maxima.

We shall consider phase ordering dynamics of a sys-
tem quenched from high temperature phase for different
choices of br and r = −1, where

br = lim
t→∞ Ḃ(t). (7)

The initial state will be assumed uncorrelated and S(k, 0)
will be chosen as S(k, 0) = ∆ = const.

This paper is organized as follows: In the next section,
an exact solution for the structure factor is obtained in the
scaling limit along the Lifshitz line, followed by discussion
of the results. Concluding remarks are given in Section 3.

2 Results and discussion

2.1 The case br > 0

br > 0 is in the microemulsion phase of the self assembled
fluids [9]. In this region, the curvature term is asymp-
totically irrelevant [9]. Guided by the γ = 0 case [9]
and dimensional analysis, Ḃ(t) ∼ Constant, implying that
B(t) → t. Then equation (4) simplifies to

∂φk

∂t
− γkx

∂φk

∂ky
= −k2

[
k2 + Q̇(t)

]
φk, (8)

where the value br = 1 has been used without loss of
generality. The above equation is similar to the one solved

by Rapapa and Bray [13] for simple binary fluids and the
details can be found there. The equal time structure factor
S(k, t) = 〈φk(t)φ−k(t)〉 is given by [13]

S(k, t) = const. × (ln Vs)
3/2

Vs
F (q)/Fm , (9)

where the ‘scale volume’ Vs = LxLyLz ∼ γt7/4/(ln t)3/4,
with characteristic length scales

Lx ∼ γ(t5/ ln t)1/4, Ly = Lz ∼ (t/ ln t)1/4, (10)

scaled momentum

q = (kxLx, kyLy, kzLz) = (u, v, w), (11)

Fm = 0.3833 and

F (q) = − 1
5u

[
(u + v)5 − v5

]
+

8
15

u2

+
4
3
uv + v2 + w2 − w4

− 2
3
w2

(
u2 + 3uv + 3v2

)
. (12)

Equation (9) does not have a form consistent with conven-
tional scaling, S(k, t) = Vsg(q), but exhibits multiscaling
behavior (i.e., the power of the ‘scale volume’ depends
continuously on the scaling variables) [14]. Interestingly,
the exponent 5/4 has also been found for lamellar phase
under shear flow [12].

2.2 The effect of Shear along the Lifshitz Line (LL)

Here we consider a quench along the Lifshitz Line (i.e.
b = 0) [9] with c2 = 0. Note that for c2 = 0, br = b.
The LL is contained in the microemulsion phase of the self
assembled fluids and terminate at the tricritical point. The
Lifshitz line can be assessed experimentally, for example,
by changing the oil/water ratio [15] or concentration of
the surfactants [16]. Equation (4) then simplifies to

∂φk

∂t
− γkx

∂φk

∂ky
= −k2

[
k4 − ṗ(t)

]
φk, (13)

where ṗ(t) = −Q̇(t) = 1 − gS0(t).
We first consider the above equation in the absence of

shear. This case was first done by Corberi and Marconi [9].
It follows from (13) that for γ = 0, the equal time struc-
ture factor S(k, t) becomes

S(k, t) = ∆ exp
[−2k6t + 2k2p(t)

]
. (14)

The next step is to find p(t) from the self consistent
equation

1 − ṗ(t) = g

∫
ddk

(2π)d
S(k, t)

=
g∆

(2π)d

(p

t

)d/4
∫

ddx exp

[
2

√
p3

t

(
x2 − x6

)]
,

(15)
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where the substitution k = (p/t)1/4x has been used. Naive
power counting in (14) suggest that characteristic length
scale L ∼ t1/6 and p(t) ∼ t−1/3 (i.e. ṗ(t) ∼ t−2/3). In fact
we will find that the above still holds but modified with
logarithmic terms. In the limit t → ∞, ṗ(t) can be dropped
in (15) since it vanishes (like t−2/3) leading to following
result, after integrating (15) with method of steepest de-
scent

1 = Ct
1−d
4 p

d−3
4 exp

[
4 ×

√
p3

27t

]
(16)

where C is a constant. It follows from (16) that to leading
order in t at late times

p(t) ∼
(

d

24

√
27t ln t

)2/3

, (17)

which justifies the assumption that ṗ(t) ∼ t−2/3. We can
now define characteristic length scale km

−1 ∼ (t/p)1/4

where km is the position of the peak of S(k, t). Then char-
acteristic length scale L ∼ km

−1 = (24t/d ln t)1/6. It is
now straight forward to show that the structure factor
has multiscaling form [9]

S(k, t) = const. × (ln L)1/2
Lds(q), (18)

where q = kL and s(q) = (3q2 − q6)/2.
We now consider equation (13) with a shear term

which we solve via change of variables:

(kx, ky, kz , t) → (kx, σ, kz , τ), (19)

where τ = t and σ = ky + γkxt. Then the left hand side
of equation (13) becomes ∂φk/∂τ and as a result (13) can
be integrated directly to give (after transforming back to
original variables) φk(t) = φk′(0)exp[f(k, t)] where k′ =
(kx, ky + γkxt, kz) and

f(k, t) = − (
k2

x + k2
z

)3
t −

[
(ky + γKxt)7 − k7

y

]

7γkx

−
(
k2
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z

)2

γkx
×

[
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y

]

− 3
(
k2
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z

)
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×
[
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y

]

+
[
(ky + γkxt)2 + k2

x + k2
z

]
p(t)

− 2γkx (ky + γkxt) c(t) + γ2k2
xe(t), (20)

with c(t) =
∫ t

0
t′ṗ(t′)dt′ and e(t) =

∫ t

0
t′2ṗ(t′)dt′. Guided

by γ = 0 we make the following ansatz, p(t) ∼ (t1/2 ln t)2/3

as t → ∞, which will be justified a posteriori. Then to
leading logarithmic accuracy c(t) → 1

4 tp(t) and e(t) →
1
7 t2p(t). Making the following change of variables:

γkx =
( p

t5

)1/4

u, ky =
(p

t

)1/4

v, kz =
(p

t

)1/4

w, (21)

substituting these results in (20), the structure factor
S(k, t) follows

S(k, t) = ∆ exp

[
2

√
p3

t
F (u, v, w)

]
, (22)

where

F (u, v, w) = (v + u)2 + w2 +
u2

7
− u

2
[v + u]

− 3
5

w2

u

[
(v + u)5 − v5

]
− w6

− w4

u

[
(v + u)3 − v3

]
−

[
(v + u)7 − v7

]

7u
.

(23)

Note that contributions to F which vanish at fixed
(u, v, w) as t → ∞ have been dropped. p(t) can be found
self consistently from

1 − ṗ(t) = g

∫
ddk

(2π)d
S(k, t), (24)

with S(k, t) given by (22). In the limit t → ∞, ṗ(t) above
vanishes and can be dropped leading to

1 = g

∫
d3k

(2π)3
S(k, t)

=
g∆p3/4

(2π)3γt7/4

∫
dudvdw exp

[
2

√
p3

t
F (u, v, w)

]
. (25)

The maximum of F , Fm = 0.5617 occurs at four points in
uvw space, namely,

(u, v, w) = ±(1.6413,−0.5957,±0.4717). (26)

These points corresponds to points in momentum space
via (21). Using the method of steepest descent to evaluate
the integral in (25) leads to

1 =
const. ∆

γtp3/2
exp

[
2

√
p3

t
Fm

]
. (27)

Then it follows that to leading logarithmic accuracy

p(t) =
(

t1/2 ln t

2Fm

)2/3

, (28)

which justifies our original ansatz. We now define charac-
teristic length scales

Lx = γ

(
t5

p

)1/4

∼ γ

(
t7

ln t

)1/6

(29)

and

Ly = Lz =
(

t

p

)1/4

∼
(

t

ln t

)1/6

. (30)
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Fig. 1. Projections of F (u, v, w) on the plane w = 0. The top
figure shows the two parallel ridges while the bottom figure
shows the peaks on the ridges. Values for F < −0.1 and F <
0.5 are not shown on the top and bottom figures respectively.

Using equations (28, 29, 30) in (22) leads to the structure
factor

S(k, t) = const. × (ln Vs)
3/2

V F (q)/Fm
s , (31)

where the scaled momentum q = (kxLx, kyLy, kzLz) and
‘scale volume’ Vs = LxLyLz. Equation (31) shows that
S(k, t) has multiscaling form. As has been been explicitly
shown in zero shear in simple fluids [17], we expect the ln t
terms (which appear in the characteristic length scales) to
be absent for finite N . The global picture of the structure
factor S(k, t) is determined by F (u, v, w) via the relation
ln S(k, t) = [F/Fm] lnVs(plus k-independent terms), so
F (u, v, w) is essentially ln S(k, t)/ ln t.

Figure 1 shows F (u, v, w) in the (u, v) plane which has
two parallel ridges terminated by two global peaks located
at ±(1.9588,−0.7598) with ‘height’ 0.5400. The ridge-like
structure has also been observed in experiments for binary
fluids [18] and polymer solutions [19]. These two dominat-
ing peaks have been found in the steady state of the mi-
croemulsion where one-loop self-consistent approximation
has been used [20]. Note that the relations lnS ∝ F ln t,
kx = u/Lx etc imply that the ridges in S become higher,
narrower and move closer together with increasing time t.
The angle between the ridges and shear direction (ky di-
rection in this case) is given by tan(θ) ∝ 1/γt. The relation
between θ and time t shows that the ridges tend to align
close to shear direction with increasing time. The angle θ
is known to be the good measure of experiment and theory
in the binary fluids [18].

In the (u, w) plane, F (u, v, w) is shown in Figure 2, and
has our peaks located at ±(0.9908,±0.4128) with ‘height’
0.5344. The structure factor pattern in the (kx, kz) plane
will decrease faster in the flow direction (i.e. kx direc-
tion) with increasing time t, resulting in an elliptical shape
with major axis along the kz direction. The peaks become
sharper with increasing time. The elliptical shape has been
observed in segregating mixtures [18].

Finally in the (ky, kz) plane S(k, t) has a full circular
symmetry as shown in Figure 3.
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Fig. 2. Projections of F (u, v, w) on the plane v = 0. The
bottom figure shows clearly the four peaks. Values for F < 0.2
and F < 0.5 are not shown on the top and bottom figures
respectively.

-1
-0.5

0
0.5

1
v

-1

-0.5

0

0.5

1

w
0

0.1
0.2
0.3
0.4
0.5

F�u,v,w�

-1
-0.5

0
0.5

1
v

Fig. 3. Projections of F (u, v, w) on the plane u = 0. Values
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3 Conclusion

We have calculated the structure factor S(k, t) for self-
assembled fluids in the scaling limit. Although the prob-
lem was simplified by looking only in the microemulsion
phase along the Lifshitz line, the basic features of the
structure factor resembles those found in ‘self-consistent
one loop approximation’ for the microemusion [20]. Simi-
lar to binary mixtures, shear introduces anisotropy in the
structure factor S(k, t) of self assembled fluids. This is
due to different growth rates in the flow direction and
directions perpendicular to the flow. We believe the mul-
tiscaling found here to be the result of the large-N theory
approximation and that for any finite N , standard scaling
will be found with the same characteristic length scales
but without ln t terms, Lx ∼ t7/6 and Ly = Lz ∼ t1/6.
However, the problem of showing analytically, that the
conventional scaling is reinstated for large but finite N in
the presence of a uniform shear remains to be solved, even
in the simple binary fluids.
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